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At short times that are faster than dephasing, photoinduced evolution of the vibrational subsystem in an
electron-phonon molecular structure depends strongly on the electronic evolution. As the electronic population
shifts between the donor and acceptor states, in the diabatic description the state with the largest population
determines the equilibrium positions and frequencies of the vibrational modes, which oscillate continuously
and without loss of coherence. The vibrational coherence transfer between the electronic states detected recently
in a number of systems is described theoretically by application of the quantized Hamiltonian dynamics
(QHD) formalism [J. Chem. Phys.2000, 113, 6557] to the coupled electronic and vibrational degrees of
freedom of a model heterodimer. The observed coherent modulation of the frequency of the probe signal is
represented with simple analytic and numeric QHD models.

1. Introduction

The need for novel energy sources drives the design of
artificial light-harvesting systems. Understanding the extremely
efficient use of solar energy seen in nature and formulation of
the basic principles of energy transfer in the artificial com-
plexes pose multiple theoretical challenges. Important examples
include the sequence of energy- and electron-transfer events that
determine collection and storage of solar energy in the bacte-
riochlorophyll units of the natural light-harvesting anten-
nae,1-9 and the femtosecond electron dynamics in artificial solar
cells composed of inorganic semiconductor substrates sensi-
tized with molecular chromophores.10-19 The desired transfer
processes in such systems are driven by the ultrafast photoin-
duced evolution of the electronic degrees of freedom that are
strongly affected by the dynamic reorganization of the quan-
tized vibrational modes.20-24 Theoretical description of the
transfer processes that are responsible for the natural and
artificial light harvesting requires explicit modeling of the
coupled electronic and vibrational dynamics together with
bath-induced dephasing and renormalization of system
energies.22-29

Conceptual approaches to the description of electronic
dynamics were developed for photoinduced evolution of elec-
tronic degrees of freedom leading to both energy and electron
transfer. The long-range energy (exciton) transfer between
chromophores in molecular aggregates is well described by the
Förster theory,30 where the transfer is also assumed to take place
after thermalization of the vibrational degrees of freedom. The
transfer rate in the Fo¨rster theory is proportional to the overlap
of the donor emission and acceptor absorption spectra. The
Förster theory successfully describes the enhancement of
absorption efficiency in the networks of chromophores acting
as solar radiation antennas.1-3 The Marcus theory31-34 provides
a standard framework for the description of electron transfer
(ET). It is a transition state theory that assumes rapid thermal-

ization of vibrational levels of the reactant relative to the transfer
rate34-36 and does not consider explicit quantum dynamics. The
theory accounts for nonadiabatic ET by correcting the transfer
rate for weak donor-acceptor coupling and shows that ET
models should take into account both electronic and vibrational
sublevels.

Ultrafast transfer processes require the calculation of explicit
quantum dynamics, in particular, for those degrees of freedom
that are not thermalized on the time scale of the transfer.34-36

The reduced density matrix methods9-11,24-26,37,38 provide a
consistent framework for a quantum treatment of several
explicit electronic and vibrational modes that are coupled to a
thermal bath of many modes. The master equations derived for
the reduced density matrices may be cast in certain limits into
the form of quantum jump equations39-43 that deal with
individual trajectories rather than ensembles. Although the
reduced density matrix description is fully quantum mecha-
nical, its application is not straightforward if the bath experiences
a strong feedback due to changes in the main system. For
instance, the redistribution of charge in ET reactions can
significantly alter the electrostatic interactions seen in the
electron donor and acceptor configurations. Generating large
reorganization energies, modifications of the solvation structure
are well treated at the classical level by molecular dynamics
techniques.44-49 The need to study dynamics of mixed quantum-
classical models, composed of a few quantum mechanical
electronic and vibrational modes that are coupled to explicit
classical degrees of freedom has resulted in a family of
approaches, among which Tully’s surface hopping50 is a well-
known representative.

The current paper uses the quantized Hamiltonian dynamics
(QHD) formalism,51-60 which starts with the Heisenberg
formulation of quantum mechanics and leads to a hierarchy of
approximations representing higher order expectation values by
products of the lower order variables. The QHD approach
captures many quantum properties with a computational effort
similar to that for classical dynamics. Originally developed for
vibrational degrees of freedom,51,53-56,58-60 the method was
extended to systems involving both vibrational and electronic
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modes.52,57 Applied to ET, QHD analytically reproduced
multiple periods of the ultrafast electronic population transfer
and its vibrationally induced dephasing.57 Here, the QHD
description of ET is extended to the vibrational coherence
transfer that has provided signatures of nontrivial quantum
dynamics in recent pump-probe experiments.20-24,61-65 The
presented vibronic model of a heterodimer includes donor and
acceptor electronic states with vibrational substructure and
captures many key properties of the ET dynamics observed in
such systems as bacteriochlorophyll aggregates5,6,22,62and dye-
semiconductor solar cells.9-19

The transfer of vibrational coherence occurs faster than
vibrational thermalization and can be detected if the length of
the optical pulse is shorter than the vibrational period.66

For instance, the oscillations seen in the stimulated emission
spectra and excited-state absorption of the bacteriochloro-
phyll dimer P* indicated that vibrational coherence can
persist for several picoseconds following a short-pulse excita-
tion.7,41,67,68 Short laser pulses revealed coherence transfer
associated with high-frequency modes,7 up to 1000 cm-1. These
long-lasting coherence effects suggest intriguing new types of
excited-state dynamics. This paper focuses on the tendency of
the vibrational coherence to outlive the transfer process
and to reflect the properties of both donor- and acceptor-state
energy surfaces through the time-resolved spectroscopic
signal.

The persistence of the vibrational coherence for times longer
than the transfer time can have two effects. In systems with
large reorganization energies and small donor-acceptor cou-
pling, the vibrational coherence modulates the transfer process
as in the ET from the special reaction center pair P* to
bacteriopheophitin4 (P*BA

-) or in the dye-sensitized semicon-
ductors.14 The transfer proceeds in a stepwise manner, with a
small amount of the acceptor wavepacket formed each time the
donor wavepacket approaches the interaction region. In the
opposite case of small reorganization energy and large donor-
acceptor coupling, the electron or energy transfer modulates the
vibrational coherence. The whole vibrational wavepacket moves
between the electronic energy surfaces, changing its vibrational
frequency, but preserving its phase. The effect of the electronic
evolution on the vibrational dynamics is discussed here in
detail.

The paper is organized as follows. Section 2.1 introduces the
model and defines the quantum-mechanical operator for the
observable probe signal. Section 2.2 presents the Hamiltonian
that drives the transfer dynamics. The equations of motion for
the coherences and important auxiliary observables are derived
in section 2.3. Section 2.4 gives the approximate solutions for
the evolution of the coherences obtained by the QHD approach
with simple closure. The results are presented in section 3. The
dynamic features of the coherences are discussed in section 3.1.
The connection between the coherences and the probe signal is
presented in section 3.2. The dynamics of the probe signal and
manifestations of the coherence transfer are analyzed in section
3.3. The concluding section summarizes the key results of the
paper, stressing the significance of the vibrational coherence
transfer relative to the more common transfer of electronic
energy and population.

2. Theory

2.1. Quantum-Mechanical Observable of the Probe Signal.
Consider an optically active vibrational mode that is triggered
by an electronic excitation. In a number of recent experi-
ments,6,20,23,61including the pump-probe studies of bacterio-

chlorophyll aggregates,62 the probe signal was strongly
modulated by such a vibrational mode. The frequency of the
mode evolved over time. Figure 1a describes this effect. The
pump pulse promotes the ground-state vibrational wavepacket
to one of the two optically active excited states. The wavepacket
then moves to the other excited state driven by ET. The probe
signal W is determined by the energy difference between the
excited-state and ground-state potential energy surfaces
evaluated at the current location of the vibrational wavepacket
q. In particular,W ) U1(q) - Uf(q) for the excitation localized
in the excited state|1〉, andW ) U1′(q) - Uf(q) for the exci-
tation localized in the excited state|1′〉. The final state|f〉 can
be either the ground statef ) 0, as in a pump-dump scheme,
or a doubly excited statef ) 2, as in a transient absorption
scheme. Because the relevant evolution of the vibrational
wavepacket occurs between states|1〉 and |1′〉, without
loss of generality and for simplicity, we considerf ) 0. The
energy of the probe signal is modulated by the vibrational
motion.

Figure 1. Potential energy surfaces involved in the vibrational
coherence transfer. (a) Measurement of vibrational coherence transfer
in bacteriochlorophyll.62 The pump pulse (arrow up) promotes the
vibrational wavepacket from the electronic ground state|0〉 with
potentialU0(q) (short dashes) to the excited electronic state|1〉 with a
steeper potentialU1(q) (solid line), eq 1. Upon photoexcitation, the
wavepacket may transfer to the second excited state|1′〉 with a softer
potential U1′(q) (long dashes). Depending on the location of the
wavepacket, the probe signal (arrow down) is modulated by one (ω1)
or the other (ω1′) vibrational frequency. (b) Simplified model for the
vibrational coherence transfer. The potential energy surfaces are
associated with the initial|1〉 (solid line) and final|1′〉 (dashes) excited
electronic states.
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The vibrational potential energy surfaces associated with the
electronic states are

Here,ε10 andε1′0 are the electronic energy differences between
the ground and two excited states. Generally, each potential in
eq 1 is characterized by its own frequencyω1, ω1′, or ω0 and
equilibrium valueQ1, Q1′, or 0 of the vibrational coordinateq.
The continuity in the vibrational evolution during the ET
produces a nontrivial phenomenon known as the vibrational
coherence transfer.6,20,23,61The phenomenon becomes possible
only if the vibrational motion along the ET coordinate is
decoupled from the environment, such that the latter cannot
significantly perturb the vibrational evolution on the ET time
scale. The vibrational coherence transfer can be most easily
detected experimentally if the donor and acceptor potential
energy surfaces are characterized by different frequencies,ω1

* ω1′. Then, the frequency of the modulation of the experi-
mental signal depends on the curvature of the potential, which
is occupied at a given time.

The vibrational coherence transfer can be detected in the
experimental signal, even if the donor and acceptor surfaces
have the same curvature. Identifying the populations of the
electronic states with the projection operators|1〉〈1| and
|1′〉〈1′|, the probe signal operator can be expressed as follows

If the potential energy surfaces have equal curvaturesω1 ) ω1′
) ω0 ) ω, and the excitation energies are the sameε10 ) ε1′0
) hν0, the dynamical contribution to the signal arises from the
state-specific coordinate operatorsq|1〉〈1| and q|1′〉〈1′| that
contribute to the change of the transition energy

The terms containing the state-specific coordinate operators
modulate not only the signal energy, but also its amplitude,
because, in general, the optical transitions involving states|1〉
and |1′〉 have different intensities. The vibrational coherence
transfer can also be detected by polarization measurements of
transitions involving the two electronic states.

The vibrational coherence transfer is determined by the
excited-state dynamics and can be studied with a scheme shown
in Figure 1b. The coherence transfer phenomenon is described
below by a simple analytic model.

2.2. The Model Hamiltonian. The model includes two
electronic states|1〉, |1′〉 and a nuclear degree of freedomq
represented by a harmonic oscillator, whose frequency is
independent of the electronic stateω1 ) ω1′ ) ω. The electronic
Hamiltonian is defined by the site energyε and couplingJ,
which are both dependent on the nuclear coordinateq )
xp/2mω(a+ + a):

Here, S- ) |1〉 〈1′| and a are the lowering operators of the
electronic and vibrational subsystems, respectively. These
operators represent quantum coherence effects. The expectation
values of S- and a are nonzero only if there is quantum
correlation between the upper and lower states. TheS- anda
operators will be referred to throughout the paper as the
coherence operators.

The dependence of the site energy and coupling on the nuclear
configuration is modeled by the leading order in the Taylor
expansion. Note that the quadratic returning potential is already
included in the phonon Hamiltonian. The interaction between
the electronic and vibrational subsystems is taken here in the
first order (bilinear) approximation.57,69

The expansion accounts for the fact that the equilibrium nuclear
positions may and usually will differ for the two electronic
states. The Hamiltonian becomes

whereg ) xp/2mωJ′q stands for the coupling strength, andRj
) (Q1′ - Q1)xmω/2p is the dimensionless difference of the
equilibrium positions, Figure 1b. If the nuclear reorganization
energypωRj*Rj ) mω2(Q1 - Q1′)2/2 is small compared to the
number of vibrational excitation quanta, the Hamiltonian (6)
takes the form

whereΩ ) ε0/p. Small nuclear reorganization energy corre-
sponds to a small Huang-Rhys factor that is typical of
stiff systems, such as quantum dots,70-72 carbon nanotubes73-75

and molecular donor-acceptor species connected by rigid
bridges.76,77

The dynamics of the model system is studied within the QHD
approach.51-60 In particular, an approximate closed analytic time
dependence of the expectation value of the excited-state
population difference operatorSz ) (|1′〉〈1′| - |1〉〈1|)/2 has been
obtained in ref 57

and is illustrated in Figure 2. The evolution of〈Sz〉(t) is
used below to construct the dynamics of vibrational coher-
ence. Generally, the current level of the QHD approximation
remains valid up to the first dephasing of the electronic
population,tω/(2π) = 50 in Figure 2. This criterion remains
valid for a wide range of the electron-phonon coupling
and initial conditions. The values were chosen in Figure 2 to

U1(q) ) mω1
2(q - Q1)

2/2 + ε10

U1′(q) ) mω1′
2(q - Q1′)

2/2 + ε1′0

U0(q) ) mω0
2q2/2 (1)

W ) (U1(q) - U0(q))|1〉〈1| + (U1′(q) - U0(q))|1′〉〈1′| (2)

) |1〉〈1|{ε10 + m (ω1
2 - ω0

2)q2/2 - mω1
2qQ1 +

mω1
2Q1

2/2} + |1′〉〈1′| {ε1′0 + m (ω1′
2 - ω0

2)q2/2 -

mω1′
2qQ1′ + mω1′

2Q1′
2/2}

W ) hν0 - mω2(q|1〉〈1|Q1 + q|1′〉〈1′|Q1′) (3)

Hel-ph ) pω (a+a + 1/2) + ε(q)S+S- + J(q) (S+ + S-) (4)

ε(q) ) ε0 + ε′qq

J(q) ) J0 + J′qq (5)

Hel-ph ) pω[a+a + 1/2]S-S+ +
lower surface

pω[(R+ + Rj*)(R + Rj) + 1/2]S+S-
upper surface

+

[J0 + g(a + a+)](S+ + S-) +
coupling

(ε - pωRj*Rj)S+S-
detuning

(6)

H ) pωa+a + pΩS+S- + g(a+ + a)(S+ + S-) (7)

〈Sz〉 ≈ - 1
2

+
g2xγ1[xγ1 + 1]

2ωa
2

(1 - cosωat) +

g2xγ1 [xγ1 - 1]
2ωb

2
(1 - cosωbt) (8)
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allow for several oscillations of the electronic population prior
to the population dephasing.

The oscillation frequenciesωa, ωb

where

depend on the difference in the electronic and vibrational
frequenciesδ and the number of the vibrational excitation quanta
〈a+a〉. The expectation valueγ1 is a constant of motion of
Hamiltonian (7). Assuming without loss of generality that the
electronic system is prepared in the state with〈Sz〉 ) -1/2, the
initial value of γ1 is equal to the number of the vibrational
quanta. The physical picture of the transfer process remains the
same if one chooses to prepare the initial state with〈Sz〉 ) 1/2.

The dynamics of the vibrational coherence is strongly
influenced by the features of the dynamics of the electronic
population and coherence. The electronic population dynamics
is given by eq 8. The electronic and vibrational coherences are
studied below.

2.3. Equations of Motion for the Electronic and Vibra-
tional Coherences.The probe signal (3) is determined by the
state-specific positions of the wavepacket and depends on the
coherences within the electron-vibrational system. An initial
short laser pulse creates both a population imbalance and a
coherence between the electronic states. The corresponding
operators evolve in time according to the Heisenberg equation
ipA

‚ ) [H, A]. In particular, the evolution of the electronic
coherence operatorS- is given by

The first term on the right-hand side of eq 10 for the electronic
coherence operator is due to purely electronic dynamics. The
second term describes the influence of the vibrational subsystem.

The vibrational coherence〈a〉 is related to the coordinate of
the vibrational wavepacket

and evolves according to

The equations of motion (EOM) fora andS- simplify in the
interaction picture. An arbitrary operatorA is transformed to
the interaction representationÃ by

whereH0 ) pωa+a + pΩS+S- is the interaction-free Hamil-
tonian; see eq 7. In the interaction representation (12) the
electronic and vibrational coherences become

and the EOM (10) and (11) take the form

Upon quantum averaging, eqs 14-15 will be solved by
approximating the averages of the products of operators by the
products of operator averages, in the spirit of the QHD
approach.51-60 The product closure generates nonlinear coupling
between the first-order differential EOM.

2.4. Approximate Solutions to the Equations of Motion
for the Coherences.The two first-order differential equations
(14) and (15) are equivalent to a single second-order differential
equation

The expectation value of the electron-nuclear correlation is
approximated by the product of the first-order expectation values

It is remarkable that this mean-field description already captures
most interference and dephasing effects, in contrast to the
Ehrenfest approximation that entirely mistreats the electronic
coherence.78-85

With identical electronic and vibrational frequenciesδ ) Ω
- ω ) 0 and〈Sz〉t)0 ) -1/2, eq 8 for the electronic population
simplifies to

Figure 2. Time dependence of the electronic population〈Sz〉. The
expectation value〈Sz〉 is computed by exact numeric diagonalization
of Hamiltonian (7) (red dashes) and approximately using eq 8 (green
solid line), for weak couplingg ) 0.005 and large vibrational amplitude
〈a+a〉t)0 ) 49. (Sz)t)0 ) -1/2, and δ ) 0. The population oscillates
with a high frequencyω+ and displays quasirelaxation on a slower
time scale determined byω-, whereω( ) 1/2(ωa ( ωb) andωa,b are
defined in eq 9. Good agreement between the exact and approximate
solutions is observed during the first several periods of the population
inversion.

ωa
2 ) δ2 + 2g2(γ1 + xγ1)

ωb
2 ) δ2 + 2g2(γ1 - xγ1) (9)

γ1 ) 〈a+a〉 + 〈Sz〉 + 1/2

δ ) Ω - ω

ipS
‚

- ) -ΩS- - gaSz (10)

〈q〉 ) xp/2mω(〈a+〉 + 〈a〉)

ipa‚ ) -ωa + gS- (11)

Ã ) exp(iH0t/p) A exp(-iH0t/p) (12)

ã(t) ) a(t)e-iωt

S̃-(t) ) S-(t)e-iΩt (13)

ip ã‚(t) ) gS̃- (14)

ipS̃
‚

-(t) ) -2gãSz (15)

d2

dt2
ã - 2g2

p2
ãSz ) 0 (16)

〈aSz〉 = 〈a〉〈Sz〉 (17)

〈Sz〉 = -1/4{cosω′at + cosω′bt} (18)

) -1/2 cosω+t cosω-t

ω′a,b ) x2gx〈a+a〉 ( x〈a+a〉

ω( ) 1/2(ω′a ( ω′b)
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whereω′a,b are the simplified expressions forωa,b, eq 9. The
frequenciesω+, ω- describe the inversion and quasi-relaxation
of the electronic population. The prefix “quasi” indicates that
at a later timet ≈ 400π the system comes close to the initial
state. Note that the approximate solution (18) for〈Sz〉(t) includes
second-order correlations.57 Substituting eq 18 into eq 16 for
the vibrational amplitude we obtain

This ordinary linear differential equation with varying coef-
ficients has the same form as the Schro¨dinger equation for a
quasiperiodic potential

with t f X, a(t) f ψ(X), and〈Sz〉(t) f [U(X) - E]. Equation
20 is also known as the Mathieu equation and was used by Hill
to describe moon tides86 and by Bloch to obtain periodic solid-
state wavefunctions.87

Equation 19 can be solved numerically. Physically important
conclusions may be derived from the approximate perturbative
solutions controlled by the electron-phonon coupling constant
g. In the zeroth-order, the vibrational coherence remains constant
in the interaction picture:

In the first-order, the vibrational coherence oscillates with the
same frequency as the electronic population:

The amplitude of the oscillation is determined by the electron-
phonon couplingg and the number of the vibrational quanta
〈a+a〉 at the initial time

The evolution in the interaction picture gives the envelope for
the fast oscillation of the vibrational amplitude in the Schro¨d-
inger picture

The exact and approximate perturbative solutions of the
simplified eq 19 are compared with the exact quantum evolution
in Figure 3. The exact quantum-mechanical expectation value
of an observableA

was computed by numeric propagation of the wavefunction, as
described in detail in ref 35.

3. Results and Discussion

The evolution of the simplest expectation values〈a〉, 〈S-〉 is
considered first. These expectation values justify the accuracy
of the approximations and are used later to build up the time
dependence of the probe signal, eq 3. The vibrationala and
electronicS- lowering operators represent the corresponding
coherences. At the same time, the real part of〈a〉 gives the mean
vibrational coordinate. Therefore,〈a〉 is also referred to as the
vibrational amplitude.

3.1. Evolution of the Vibrational and Electronic Coher-
ences and the Electron-Vibrational Correlation.The expecta-
tion values of the vibrational amplitude calculated by the exact
wavefunction propagation, numeric solution of the QHD equa-
tions, and perturbative solution of the QHD equations are
presented in Figure 3a. For all methods, the expectation value
of the vibrational amplitude in the interaction representation
displays slow damped oscillations of the same frequency as the
oscillations of the electronic population〈Sz〉. The exact and

Figure 3. Time evolution of (a) the real part of the vibrational
coherence and (b) the imaginary part of the electronic coherence in
the interaction picture, determined by exact numeric diagonalization
of Hamiltonian (7) (red dashes), numeric solution of eq 19 (blue thick
line), and analytic perturbative solution (22) (green thin line) for the
same parameter values as in Figure 2. The solutions agree during the
first several electronic population transfer events and start to diverge
around the first electronic population collapse time57 Tcoll ) π/2ω-,
corresponding toωTcoll/(2π) = 50. The vibrational and electronic
coherences display slowly damped oscillations with the same frequency
as the electronic population〈Sz〉, Figure 2. The oscillation is small in
amplitude, 0.007, compared to the absolute value, 7.

ã̈ + g2/2{cosω′at + cosω′bt}ã ) 0 (19)

- p2

2m
ψ′′ + [U(X) - E] ψ ) 0 (20)

ã(0)(t) ) ã(0) ) const (21)

ã(1)(t) ) ã(0)[1 - C + C
2

(cosω′at + cosω′bt)] (22)

C )
ω′a

2 + ω′b
2

2
) 2g2 〈a+a〉t)0 (23)

a(1)(t) ) a(0)e-iωt [1 - C + C
2

(cosω′at + cosω′bt)] (24)

〈q〉(t) )

(〈q〉(0) cosωt +
〈p〉(0)
mω

sin ωt)[1 - C + C
2

(cosω′at + cosω′bt)]

〈A〉 ) 〈ψ(t)|A|ψ(t)〉 (25)

|ψ(t)〉 ) exp (-iHt/p)|ψ(0)〉

) ∑
j

|φj〉〈φj|ψ(0)〉 exp(-iεjt/p)
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approximate solutions agree quantitatively for timesωt/(2π) <
15 and keep the same qualitative behavior until the time of the
first population collapse. Note that, without inhomogeneous
broadening, the collapse time coincides with the pure dephasing
time.72 In our model the first population collapse occurs 4 times
faster than the population revival57 Tcoll ) Trev/4, Trev ) 2π/
ω-, such thatωTcoll/(2π) ) 49.87,Tcoll = 100π, and Trev =
400π. The exact solution shows a noticeable decrease in the
vibrational amplitude. The decrease is less substantial in the
numeric solution of eq 19 and is even smaller in the perturbative
solution, eq 22. Note that the oscillations of the vibrational
amplitude are small,=0.007, relative to its absolute value of
=7. Although the discrepancy in the oscillations of the mean
amplitudes computed by the three methods in the interaction
representation〈ã〉(t) is noticeable, the observable values of the
mean amplitudes given in the Schro¨dinger representation display
negligible differences. The vibrational and electronic coherences
given in the interaction representation, Figure 3a,b, provide the
envelopes for the rapidly oscillating coherences in the Schro¨-
dinger picture (not shown). The coherence transfer of interest
is significantly faster than the vibrational relaxation seen in the
small decrease of the vibrational amplitude in Figure 3a and is
well described by the approximate QHD solutions; see Figures
4 and 5 below.

The dynamics of the vibrational coherence is directly related
to the electronic coherence shown in Figure 3b. According to
eq 14, the time derivative of the vibrational coherence is
proportional to the current magnitude of the electronic coher-
ence. The frequences of the oscillations of the two coherences
are determined by the electron-phonon couplingg and the
amount of the vibrational energy〈a+a〉, eqs 9 and 18. The
envelope of the electronic coherence reaches a maximum each
time the populations of the two states become equal. For times
shorter than the dephasing time, the exact and QHD solutions
show negligible differences. A detailed analysis of electronic-
state dynamics in terms of the state projections〈Sx〉, 〈Sy〉, and
〈Sz〉 on the Bloch sphere is given in ref 57.

The evolution of the correlation between the vibrational
coherence and electronic population〈aSz〉 is plotted in Figure
4. The approximate solutions are obtained using closure (17)
and eqs 18 and 19. The approximate correlation〈a〉〈Sz〉 generated
by solving eq 19 numerically is indistinguishable from the result
obtained with the perturbation theory (22). The approximate
results (solid line) agree with the exact solution (dashes),
Figure 4.

In the interaction picture, the correlation〈aSz̃ 〉 shown in
Figure 4a oscillates with the same frequency as the electronic
population 〈Sz〉 shown in Figure 2. The maximum value of
〈aSz
˜〉 is equal to half of the maximum value of〈ã〉. The

electron-vibrational correlation is high initially and decreases
due to dephasing. The correlation in the Schro¨dinger picture
rapidly oscillates with the vibrational frequencyω, Figure 4b.
Similar to the observables shown in Figures 2 and 3, the QHD
solutions given in Figure 4 agree quantitatively with the exact
solutions untilωt/(2π) < 15 and are qualitatively correct up to
the collapse timeωTcoll/(2π) = 50. Because〈a〉, 〈S-〉, and〈aSz〉
are complex variables, Figures 3 and 4 display their real or
imaginary parts, corresponding to〈q〉x2mω/p, 〈Sy〉, and〈qSz〉
x2mω/p. The complementary variables〈p〉x2/mωp, 〈Sx〉, and
〈pSz〉x2/mωp exhibit similar behavior.

3.2. State-Specific Vibrational Coherence Operators.The
vibrational coherence transfer can be conveniently analyzed
using linear combinations of the electron-vibrational correlation
〈aSz〉 and the vibrational coherence〈a〉. Using completeness in
the electronic subsystem 1ˆel ) |1〉〈1| + |1′〉〈1′|, the vibrational
coherence〈a〉 can be written in the total electron-vibrational
space as

Combinations of the electronic populationSz and the unit 1ˆel

operator give projections onto the initial|1〉〈1| and final
|1′〉〈1′| electronic states. Similarly, combinations of the correla-
tion 〈aSz〉 and vibrational coherence〈a1̂el〉 give the expectation
values of the vibrational coherences for the initial〈a|1〉〈1|〉 and
final 〈a|1′〉〈1′|〉 electronic states

The state-specific vibrational coherence operators characterize
the location of the vibrational wavepacket, correlated with a
given electronic state. The real parts of (26) represent the state-
specific coordinates, and the imaginary parts represent the state-
specific momenta. The values of the state-specific vibrational
coordinates determine the magnitude of the probe signal (3).

3.3. Pathways of the Vibrational Coherence.Consider the
evolution of the expectation values of the state-specific vibra-
tional coherences (26) for the system prepared in a direct product
of pure electronic and coherent quasiclassical vibrational states.

Figure 5 shows the dynamics of the state-specific vibrational
coordinates corresponding to this situation. Initially〈Sz〉t)0 )
-1/2, and the expectation value〈q|1′〉〈1′|〉t)0 specific for the
final state is zero. The initial vibrational amplitude〈a|1〉〈1|〉t)0

in the initial state coincides with the total amplitude〈a〉t)0, which

Figure 4. Time dependence of the correlation between the electronic
population and vibrational amplitude in (a) the interaction picture and
(b) the Schro¨dinger picture. The interaction representation isolates the
key dynamics features, and the Schro¨dinger representation presents the
experimentally observable result. The exact data (blue solid line) are
compared with the approximate data (red dashes) generated using eqs
17-19. The results obtained using the perturbative evolution (22) are
indistinguishable from the results obtained by numeric integration of
eq 19. The initially large electron-phonon correlation decreases with
increasing vibrationally induced dephasing in the electronic subsystem.

〈a〉 ) 〈a‚1̂el〉
) 〈a(|1′〉〈1′| + |1〉〈1|)〉

〈a|1〉〈1|〉 ) 〈a1̂/2 + aSz〉 (26)

〈a|1′〉〈1′|〉 ) 〈a1̂/2 - aSz〉

|ψ〉 ) |R〉
vibrational

‚ |1〉
electronic

(27)
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oscillates with the frequency corresponding to the electronic
state|1〉; see Figure 1.

The electronic evolution affects the vibrational subsystem.
As the electronic subsystem approaches the first population flip,
the vibrational amplitude of the initial state decreases quickly,
and the amplitude of the final state rises, Figure 5. When the
electronic population〈Sz〉 changes sign and reaches1/2, the
initial-state vibrational coherence vanishes, and the final-state
vibrational coherence grows to the maximal value equal to the
total vibrational amplitude. This transfer of the vibrational
coherence between the electronic states repeats multiple times
and is very well described by the QHD approximation.

The fact that the simple QHD approximation involving the
first-order closure (17) gives good agreement with the exact
result is remarkable and emphasizes the flexibility of the QHD
approach. If the operator representation is chosen appropriately,
higher order QHDs are not needed. The lowest-order mean-
field-type approximation becomes sufficient and can be easily
used in practice for large systems.

In the wavefunction representation, the vibrational coherence
transfer involves motion of the vibrational wavepacket between
the electronic potential energy surfaces; see eq 2 and Figure 1.
In some cases, the transfer of the electronic population and the
vibrational coherence show distinct steps.10,11,28,88In the present
case the transfer is continuous, because the initial vibrational
amplitude is much larger than the displacement between the
potential energy minima in the two electronic states. First, the
larger portion of the wavepacket remains in the initial potential,
and the expectation value of the vibrational coordinate oscillates
around the equilibrium position of the initial surface. Gradually,
the wavepacket shifts to the final state, and its mean coordinate
oscillates around the equilibrium position associated with the
final state. If the curvatures of the initial and final electronic
energy surfaces are different, the frequency of the oscillation
of the vibrational coordinate changes during the transfer.

Experimentally, emission from the excited states|1〉 and|1′〉
to the ground state|0〉 may be induced by a short probe pulse,
which is characterized by frequency and arrival time. The
transition will occur only if the pulse frequency matches the
energy gap between the ground and excited electronic states at
the pulse arrival time. Because the energy gap is modulated by
the evolution of the vibrational wavepacket, Figure 1, the
optimal probe frequency is determined by the wavepacket

coordinate. In the majority of experiments performed using a
constant probe frequency, a mismatch between the optimal and
experimental probe frequencies decreases the signal intensity.
The signal intensity analysis performed with the time-window
Fourier transform technique is able to reveal the vibrational
coherence transfer between the electronic states with different
potential energy curvatures.89 The recently observed6,20,23,61,62

effect of vibrational coherence transfer is distinct from the more
typical transfers of electronic energy and population, during
which vibrational coherence is usually not maintained.

4. Concluding Remarks

Vibrational coherence transfer is an important and fascinating
effect observed in a variety of systems, including natural and
artificial light-harvesting complexes, proteins, and liquids.6,20,23,61,62

Closely related to the energy and electron transfer, the vibra-
tional coherence transfer is a separate phenomenon that occurs
on the time scale of the electronic transition. To be observed,
the transfer of vibrational coherence must proceed faster than
dephasing. On the other hand, the energy and electron transfer
can be incoherent and slower than dephasing.

The vibrational coherence transfer has been described with
the QHD approach at a very simple, but accurate level. Good
agreement between the exact quantum simulation and QHD
involving the first-order closure (17) is an outstanding result,
emphasizing the value of proper representation of the physical
phenomenon. In contrast, the Ehrenfest approach, which also
involves the first-order closure,52 is formulated with a different
set of operators and grossly mistreats quantum coherence.78-85

The results reported here and in the previous publication57

indicate that spin-phonon models are particularly useful for
quantum description of population and coherence transfer,
dephasing, and relaxation.

The presented results are obtained with a minimalistic
approach that can be extended with great computational
efficiency to systems comprised of many vibrational and
electronic degrees of freedom. The current level of the QHD
approximation extends only one step beyond classical mechan-
ics. The number of the first-order equations involved in the
approximation scales quadratically with system dimensionality
N, and so does the computational effort. In comparison, an exact
wavefunction method requires propagation in the space ofMN

basis vectors withM vectors per degree of freedom, and a
density matrix description scales asM2N. The presented approach
can be applied to systems that are nearly the same in size as
those described with classical mechanics, allowing for a great
level of detail in the modeling of the experimental data.
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