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At short times that are faster than dephasing, photoinduced evolution of the vibrational subsystem in an
electron-phonon molecular structure depends strongly on the electronic evolution. As the electronic population
shifts between the donor and acceptor states, in the diabatic description the state with the largest population
determines the equilibrium positions and frequencies of the vibrational modes, which oscillate continuously
and without loss of coherence. The vibrational coherence transfer between the electronic states detected recently
in a number of systems is described theoretically by application of the quantized Hamiltonian dynamics
(QHD) formalism [. Chem. Phys200Q 113 6557] to the coupled electronic and vibrational degrees of
freedom of a model heterodimer. The observed coherent modulation of the frequency of the probe signal is

represented with simple analytic and numeric QHD models.

1. Introduction ization of vibrational levels of the reactant relative to the transfer
rate®*-36 and does not consider explicit quantum dynamics. The
theory accounts for nonadiabatic ET by correcting the transfer
rate for weak donoracceptor coupling and shows that ET

The need for novel energy sources drives the design of
artificial light-harvesting systems. Understanding the extremely
terjgclf;stigsp?rig];isp?g g? irr?grgsg;etrr]z;rr]] s?eart ﬂ;etﬁgd;::irf?;?;?té%%?f models should take into account both electronic and vibrational
plexes pose multiple theoretical challenges. Important examplesSUbleVE|S' _ ) o
include the sequence of energy- and electron-transfer events that Ultrafast transfer processes require the calculation of explicit
determine collection and storage of solar energy in the bacte-guantum dynamics, in particular, for those degrees of freedom
riochlorophyll units of the natural light-harvesting anten- that are not thermalized on the time scale of the trarfsfef.
nael~? and the femtosecond electron dynamics in artificial solar The reduced density matrix methdds! 24263738 provide a
cells composed of inorganic semiconductor substrates sensi-consistent framework for a quantum treatment of several
tized with molecular chromophoré%:1® The desired transfer ~ €xplicit electronic and vibrational modes that are coupled to a
processes in such systems are driven by the ultrafast photointhermal bath of many modes. The master equations derived for
duced evolution of the electronic degrees of freedom that are the reduced density matrices may be cast in certain limits into
strongly affected by the dynamic reorganization of the quan- the form of quantum jump equaticfis*® that deal with
tized vibrational mode¥-24 Theoretical description of the individual trajectories rather than ensembles. Although the
transfer processes that are responsible for the natural andeduced density matrix description is fully quantum mecha-
artificial light harvesting requires explicit modeling of the nical, its application is not straightforward if the bath experiences
coupled electronic and vibrational dynamics together with @ strong feedback due to changes in the main system. For
bath-induced dephasing and renormalization of system instance, the redistribution of charge in ET reactions can
energieg2-29 significantly alter the electrostatic interactions seen in the

Conceptual approaches to the description of electronic electron donor and acceptor configurations. Generating large
dynamics were developed for photoinduced evolution of elec- reorganization energies, modifications of the solvation structure
tronic degrees of freedom leading to both energy and electronare well treated at the classical level by molecular dynamics
transfer. The long-range energy (exciton) transfer between techniques? 4 The need to study dynamics of mixed quantum-
chromophores in molecular aggregates is well described by theclassical models, composed of a few quantum mechanical
Forster theon?® where the transfer is also assumed to take place electronic and vibrational modes that are coupled to explicit
after thermalization of the vibrational degrees of freedom. The classical degrees of freedom has resulted in a family of
transfer rate in the Feter theory is proportional to the overlap ~approaches, among which Tully’s surface hoppfirig a well-
of the donor emission and acceptor absorption spectra. Theknown representative.

Forster theory successfully describes the enhancement of The current paper uses the quantized Hamiltonian dynamics
absorption efficiency in the networks of chromophores acting (QHD) formalism3:-6 which starts with the Heisenberg
as solar radiation antenn&s’ The Marcus theoR} 34 provides  formulation of quantum mechanics and leads to a hierarchy of
a standard framework for the description of electron transfer approximations representing higher order expectation values by
(ET). Itis a transition state theory that assumes rapid thermal- products of the lower order variables. The QHD approach
captures many quantum properties with a computational effort
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modes?257 Applied to ET, QHD analytically reproduced (a)
multiple periods of the ultrafast electronic population transfer
and its vibrationally induced dephasikyHere, the QHD
description of ET is extended to the vibrational coherence
transfer that has provided signatures of nontrivial quantum
dynamics in recent pumpprobe experiment¥ 24665 The
presented vibronic model of a heterodimer includes donor and
acceptor electronic states with vibrational substructure and
captures many key properties of the ET dynamics observed in
such systems as bacteriochlorophyll aggreg&t&ss2and dye-
semiconductor solar celfs1®

The transfer of vibrational coherence occurs faster than
vibrational thermalization and can be detected if the length of
the optical pulse is shorter than the vibrational pefd.
For instance, the oscillations seen in the stimulated emission !
spectra and excited-state absorption of the bacteriochloro-
phyll dimer P* indicated that vibrational coherence can
persist for several picoseconds following a short-pulse excita- v
tion.”41.67.68 Short laser pulses revealed coherence transfer
associated with high-frequency modasp to 1000 cm?. These e
long-lasting coherence effects suggest intriguing new types of

) ce effe (b)

excited-state dynamics. This paper focuses on the tendency of
the vibrational coherence to outlive the transfer process ,"
and to reflect the properties of both donor- and acceptor-state
energy surfaces through the time-resolved spectroscopic
signal.

The persistence of the vibrational coherence for times longer ~
than the transfer time can have two effects. In systems with t
large reorganization energies and small deraxceptor cou-
pling, the vibrational coherence modulates the transfer process
as in the ET from the special reaction center pair P* to
bacteriopheophitth(P*Ba™) or in the dye-sensitized semicon- separation Q- Qp =(mw/h) " a nuclear
ductors! The transfer proceeds in a stepwise manner, with a reorganization
small amount of the acceptor wavepacket formed each time theFigure 1. Potential energy surfaces involved in the vibrational
donor wavepacket approaches the interaction region. In the coherence transfer. (a) Measurement of vibrational coherence transfer
opposite case of small reorganization energy and large donor 1 bacteriochlorophylf? The pump pulse (arrow up) promotes the

) vibrational wavepacket from the electronic ground stgle with

apceptor coupling, the electron or anergy transfer modulates thepotentiaIUo(q) (short dashes) to the excited electronic staféwith a
vibrational coherence. The whole vibrational wavepacket moves sieeper potentially(q) (solid line), eq 1. Upon photoexcitation, the
between the electronic energy surfaces, changing its vibrationalwavepacket may transfer to the second excited $1afavith a softer
frequency, but preserving its phase. The effect of the electronic potential Ux(q) (long dashes). Depending on the location of the

evolution on the vibrational dynamics is discussed here in wavepacket, the probe signal (arrow down) is modulated by @Rl (
detail. or the other ¢1) vibrational frequency. (b) Simplified model for the

Th . ized as foll Section 2.1 introd th vibrational coherence transfer. The potential energy surfaces are
€ paper IS organized as Tollows. Section .1 INroduces e 45qqciated with the initidl(solid line) and final ' C{dashes) excited

model and defines the quantum-mechanical operator for the gjectronic states.
observable probe signal. Section 2.2 presents the Hamiltonian
that drives the transfer dynamics. The equations of motion for .
the coherences and important auxiliary observables are derivec®hlorophyll aggregate®, the probe signal was strongly

in section 2.3. Section 2.4 gives the approximate solutions for Medulated by such a vibrational mode. The frequency of the

the evolution of the coherences obtained by the QHD approachM0de evolved over time. Figure 1a describes this effect. The
with simple closure. The results are presented in section 3. ThePUMP pulse promotes the ground-state vibrational wavepacket
dynamic features of the coherences are discussed in section 3.1{0 One of the two optically active excited states. The wavepacket
The connection between the coherences and the probe signal ighen moves to the .other excited state drllven by ET. The probe
presented in section 3.2. The dynamics of the probe signal angS/9nal W is determined by the energy difference between the

manifestations of the coherence transfer are analyzed in sectiorfXCited-state and ground-state potential energy surfaces
3.3. The concluding section summarizes the key results of the evaluated at the current location of the vibrational wavepacket

paper, stressing the significance of the vibrational coherenced N particular, W= Uy(q) — U(q) for the excitation localized

transfer relative to the more common transfer of electronic " the excited stat¢ll]andW = Ux(q) — Ur(q) for the exci-
energy and population.

~800nm

pump
probe

Eo detuning

tation localized in the excited stat# [] The final statdfCican

be either the ground stafe= 0, as in a pumpdump scheme,

2. Theory or a doubly excited statt= 2, as in a Fransient absprptipn

scheme. Because the relevant evolution of the vibrational

2.1. Quantum-Mechanical Observable of the Probe Signal. = wavepacket occurs between statgd] and |1'[J without

Consider an optically active vibrational mode that is triggered loss of generality and for simplicity, we consider= 0. The

by an electronic excitation. In a number of recent experi- energy of the probe signal is modulated by the vibrational

ments$20.23.61including the pump-probe studies of bacterio-  motion.
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The vibrational potential energy surfaces associated with the Here, S- = |10[1'| and a are the lowering operators of the
electronic states are electronic and vibrational subsystems, respectively. These
operators represent quantum coherence effects. The expectation
U,(g) = mwlz(q - Q1)2/2+ €10 values of S and a are nonzero only if there is quantum
) ) correlation between the upper and lower states. $handa
Up(a) = Moy (q — Q)72 + €4 operators will be referred to throughout the paper as the
5 2 coherence operators.

Uo(a) = mwy"q72 (1) The dependence of the site energy and coupling on the nuclear
configuration is modeled by the leading order in the Taylor
expansion. Note that the quadratic returning potential is already
included in the phonon Hamiltonian. The interaction between
the electronic and vibrational subsystems is taken here in the
first order (bilinear) approximatio?r.5°

Here,e1p andey are the electronic energy differences between
the ground and two excited states. Generally, each potential in
eq 1 is characterized by its own frequensy, w1, or wg and
equilibrium valueQ,, Qy, or 0 of the vibrational coordinatg

The continuity in the vibrational evolution during the ET

produces a nontrivial phenomenon known as the vibrational €(Q) =€, + €q
coherence transfér02361The phenomenon becomes possible a
only if the vibrational motion along the ET coordinate is J@) = I, + Ja (5)

decoupled from the environment, such that the latter cannot

significantly perturb the vibrational evolution on the ET time The expansion accounts for the fact that the equilibrium nuclear
scale. The vibrational coherence transfer can be most easilypositions may and usually will differ for the two electronic
detected experimentally if the donor and acceptor potential states. The Hamiltonian becomes

energy surfaces are characterized by different frequeneies,

# wr. Then, the frequency of the modulation of the experi- Hg_p, = hola'a+ 1/2]S S, +
mental signal depends on the curvature of the potential, which lower surface
is occupied at a given time. hol(a” + a*)(a+ a) + 1/2]S,S_ +
The vibrational coherence transfer can be detected in the upper surface
experimental signal, even if the donor and acceptor surfaces [J+g@+a)(s, +s)+
have the same curvature. Identifying the populations of the coupling
electronic states with the projection operatgi$lll| and (e — hoa*a)S,S_ (6)
|1'['|, the probe signal operator can be expressed as follows detuning

W= (Uy(q) — Uy(@))|10| + (Uy.(q) — Up(q))|2'M'|  (2) whereg = vA/l2mwJ, stands for the coupling strength, aad
5 o 5 = (Qr — Q)vmw/2h is the dimensionless difference of the
= |1[|]1|{610+ m(w;” — )72 — mw;qQ, + equilibrium positions, Figure 1b. If the nuclear reorganization
P i 2 o0 2 energyhowd*a = mw?(Q; — Qr)%2 is small compared to the
Mw,"Qy /2} + [V {61'0 +m(oy” — wg)q72 - number of vibrational excitation quanta, the Hamiltonian (6)
ml’Zqu' + mwl'le'Z/Z} takes the form

If the potential energy surfaces have equal curvatikes wy H=hoa'a+hQS.S +g@ +a)(S,+S) (7)
= wo = w, and the excitation energies are the sae= c1o o
= hwo, the dynamical contribution to the signal arises from the whereQ = eo/fi. Small nuclear reorganization energy corre-

state-specific coordinate operatoglMl| and g|1'(M'| that sponds to a small HuangRhys factor that is typical of
contribute to the change of the transition energy stiff systems, such as quantum déts’? carbon nanotubé¥ 7>

and molecular doneracceptor species connected by rigid
W= hw, — mo’(qI1M|Q, + qI1'M'Q,)  (3)  bridges’®’?
The dynamics of the model system is studied within the QHD

The terms containing the state-specific coordinate operatorsapproactt?~60In particular, an approximate closed analytic time
modulate not only the signal energy, but also its amplitude, dependence of the expectation value of the excited-state
because, in general, the optical transitions involving stdtes  population difference operat& = (|1'(I'| — |1011])/2 has been
and |1'Ohave different intensities. The vibrational coherence obtained in ref 57
transfer can also be detected by polarization measurements of

transitions involving the two electronic states. 92 vy, + 1
The vibrational coherence transfer is determined by the [$[~ — 1 + L;](l — cosw,t) +
excited-state dynamics and can be studied with a scheme shown 2 2w

in Figure 1b. The coherence transfer phenomenon is described

beIO\?v by a simple analytic model. P 92‘/7/—1 \/V—l -1 (1 - coswy) (8)
2.2. The Model Hamiltonian. The model includes two 20,2 b

electronic state$l[] |1'0Oand a nuclear degree of freedam

.represented by a harmonic oscillator, whose frequen'cy iS and is illustrated in Figure 2. The evolution @B,[t) is

independent of the electronic staie = wy = w. The electronic  ysed below to construct the dynamics of vibrational coher-

Hamiltonian is defined by the site energyand couplingJ, ence. Generally, the current level of the QHD approximation
which are both dependent on the nuclear coordirgte remains valid up to the first dephasing of the electronic
Vhl2mo(at + a): population,tw/(27) = 50 in Figure 2. This criterion remains

N valid for a wide range of the electrefphonon coupling
Helpn = hw (@"a+ 1/2)+ @S, S.+I0) (S, +S) (4) and initial conditions. The values were chosen in Figure 2 to
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Figure 2. Time dependence of the electronic populati&l] The
expectation value$,is computed by exact numeric diagonalization

of Hamiltonian (7) (red dashes) and approximately using eq 8 (green

solid line), for weak couplingg = 0.005 and large vibrational amplitude
[@taldo = 49. (8)=0 = —¥,, andd = 0. The population oscillates
with a high frequencyw and displays quasirelaxation on a slower
time scale determined hy_, wherew. = 1/2(w, + wp) andw,yp, are

defined in eq 9. Good agreement between the exact and approximate
solutions is observed during the first several periods of the population

inversion.

allow for several oscillations of the electronic population prior
to the population dephasing.
The oscillation frequencie®,, wp

6Ua2 =06+ 292(V1 + \/V_l)

o) = 0"+ 20°(y, — \/v1) 9)

where

y, = @ alH [$H 1/2
0=Q—w

depend on the difference in the electronic and vibrational
frequencie® and the number of the vibrational excitation quanta
(a*al] The expectation valug; is a constant of motion of
Hamiltonian (7). Assuming without loss of generality that the
electronic system is prepared in the state Viélil= —%/», the
initial value of v, is equal to the number of the vibrational
guanta. The physical picture of the transfer process remains th
same if one chooses to prepare the initial state Wthi= /5.

The dynamics of the vibrational coherence is strongly
influenced by the features of the dynamics of the electronic

€.
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The first term on the right-hand side of eq 10 for the electronic
coherence operator is due to purely electronic dynamics. The
second term describes the influence of the vibrational subsystem.

The vibrational coherendéllis related to the coordinate of
the vibrational wavepacket

0= v/A/2mo(@" O+ @)

and evolves according to

ihA=—wa+gS. (11)
The equations of motion (EOM) fax and S- simplify in the
interaction picture. An arbitrary operatéris transformed to
the interaction representatighby

A = exp(Hgt/h) A exp(—iHgt/h) (12)
whereHo = hwata + AQS.S_ is the interaction-free Hamil-
tonian; see eq 7. In the interaction representation (12) the
electronic and vibrational coherences become

at) = a(t)e "

S(t)=S (e '™ (13)

and the EOM (10) and (11) take the form
in &) =gS. (14)
ihS (1) = —2gas, (15)

Upon quantum averaging, eqgs -145 will be solved by
approximating the averages of the products of operators by the
products of operator averages, in the spirit of the QHD
approact?!=% The product closure generates nonlinear coupling
between the first-order differential EOM.

2.4, Approximate Solutions to the Equations of Motion
for the Coherences.The two first-order differential equations
(14) and (15) are equivalent to a single second-order differential
equation

(16)

The expectation value of the electrenuclear correlation is
approximated by the product of the first-order expectation values

@S~ @IS0 17)

population and coherence. The electronic population dynamicsit is remarkable that this mean-field description already captures

is given by eq 8. The electronic and vibrational coherences aremost interference and dephasing effects, in contrast to the

studied below. Ehrenfest approximation that entirely mistreats the electronic
2.3. Equations of Motion for the Electronic and Vibra- coherencéd8-85

tional Coherences.The probe signal (3) is determined by the With identical electronic and vibrational frequencies Q

state-specific positions of the wavepacket and depends on the— » = 0 and[$,[Ly = —/,, eq 8 for the electronic population

coherences within the electron-vibrational system. An initial simplifies to

short laser pulse creates both a population imbalance and a

coherence between the electronic states. The corresponding

operators evolve in time according to the Heisenberg equation

ihA = [H, A]. In particular, the evolution of the electronic

coherence operat@®- is given by

(5,3~ —1/4{cosw)t + coswyt} (18)

= —1/2 cosw,t cosw_t

w,, = 2gy @ a y@al

ihS = —-QS —gaS w, =12, + w})

(10)
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wherewyy, are the simplified expressions far,p, €9 9. The
frequenciesv+, w— describe the inversion and quasi-relaxation
of the electronic population. The prefix “quasi” indicates that
at a later timet ~ 4007 the system comes close to the initial
state. Note that the approximate solution (18)@ff(t) includes
second-order correlatioft$.Substituting eq 18 into eq 16 for
the vibrational amplitude we obtain

&+ g/2{coswit + coswj}a=0 (19)
This ordinary linear differential equation with varying coef-

ficients has the same form as the Sdinger equation for a
quasiperiodic potential

h2
— oy HIUX) — By =0 (20)

with t — X, a(t) — ¢(X), and &) — [U(X) — E]. Equation
20 is also known as the Mathieu equation and was used by Hill
to describe moon tidésand by Bloch to obtain periodic solid-
state wavefunction®.

Equation 19 can be solved numerically. Physically important
conclusions may be derived from the approximate perturbative
solutions controlled by the electrehonon coupling constant

g. In the zeroth-order, the vibrational coherence remains constant

in the interaction picture:

a9(t) = &(0) = const (21)
In the first-order, the vibrational coherence oscillates with the
same frequency as the electronic population:

a0 = &(0)1 - C+ Scoswit + coswpp)|  (22)

The amplitude of the oscillation is determined by the electron
phonon couplingg and the number of the vibrational quanta
(atallat the initial time

wff + w}?

== s Ea,

(23)
The evolution in the interaction picture gives the envelope for
the fast oscillation of the vibrational amplitude in the Sahro
inger picture

a®(t) = a(0)e ! [1 - C+ %(cosw;t + cosw;)t)] (24)
i) =
(EqEGO) coswt + %@)sin a)t)[l —-C+ %(cosw;t + cosw[,t)]

The exact and approximate perturbative solutions of the
simplified eq 19 are compared with the exact quantum evolution
in Figure 3. The exact quantum-mechanical expectation value
of an observablé
[AC= (1) Aly (D
|y (t)O= exp (—iHt/R)|y(0)O

= Z|¢j%j|¢(0)|:b)(p(_i€jt/h)
J

(25)
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Figure 3. Time evolution of (a) the real part of the vibrational
coherence and (b) the imaginary part of the electronic coherence in
the interaction picture, determined by exact numeric diagonalization
of Hamiltonian (7) (red dashes), numeric solution of eq 19 (blue thick
line), and analytic perturbative solution (22) (green thin line) for the
same parameter values as in Figure 2. The solutions agree during the
first several electronic population transfer events and start to diverge
around the first electronic population collapse €. = 7/2w-,
corresponding tawTeo/(27) = 50. The vibrational and electronic
coherences display slowly damped oscillations with the same frequency
as the electronic populatidig,[) Figure 2. The oscillation is small in
amplitude, 0.007, compared to the absolute value, 7.

0 10 20 60

was computed by numeric propagation of the wavefunction, as
described in detail in ref 35.

3. Results and Discussion

The evolution of the simplest expectation vallias [$-[lis
considered first. These expectation values justify the accuracy
of the approximations and are used later to build up the time
dependence of the probe signal, eq 3. The vibratienahd
electronicS- lowering operators represent the corresponding
coherences. At the same time, the real pafidfives the mean
vibrational coordinate. Therefor&Uis also referred to as the
vibrational amplitude.

3.1. Evolution of the Vibrational and Electronic Coher-
ences and the Electron-Vibrational Correlation. The expecta-
tion values of the vibrational amplitude calculated by the exact
wavefunction propagation, numeric solution of the QHD equa-
tions, and perturbative solution of the QHD equations are
presented in Figure 3a. For all methods, the expectation value
of the vibrational amplitude in the interaction representation
displays slow damped oscillations of the same frequency as the
oscillations of the electronic populatidi,[] The exact and
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The evolution of the correlation between the vibrational
coherence and electronic populati@&is plotted in Figure
4. The approximate solutions are obtained using closure (17)
and eqgs 18 and 19. The approximate correlddils, generated
by solving eq 19 numerically is indistinguishable from the result
obtained with the perturbation theory (22). The approximate
results (solid line) agree with the exact solution (dashes),
Figure 4.

In the interaction picture, the correlatidaS COshown in

4 T T v T T b Figure 4a oscillates with the same frequency as the electronic
Hfl | population[ELshown in Figure 2. The maximum value of
. RN Y (s Ois equal to half of the maximum value d&L The
ol sk electron-vibrational correlation is high initially and decreases
b - i ' due to dephasing. The correlation in the Sclimger picture
&« -2 ] rapidly oscillates with the vibrational frequeney, Figure 4b.
_a i : i ; i Similar to the observables shown in Figures 2 and 3, the QHD
0 10 20 30 40 50 60 solutions given in Figure 4 agree quantitatively with the exact
time, wt/(2m) solutions untilwt/(27) < 15 and are qualitatively correct up to

Figure 4. Time dependence of the correlation between the electronic the collapse time Tcon/(277) = 50. Becaus@l) (- and@S 0

population and vibrational amplitude in (a) the interaction picture and 5, complex variables, Figures 3 and 4 display their real or
(b) the Schrdinger picture. The interaction representation isolates the . . ' . 3/ 2maolh
key dynamics features, and the Safinger representation presents the imaginary parts, corresponding [/ 2mw/A, [§,0) and [GSD

experimentally observable result. The exact data (blue solid line) are v/ 2mw/h. The complementary variablépx/ 2/mwh, [$[] and
compared with the approximate data (red dashes) generated using eqspS[3/2/mwh exhibit similar behavior.

17-19. The results obtained using the perturbative evolution (22) are * 3 5 ga16-Specific Vibrational Coherence OperatorsThe
indistinguishable from the results obtained by numeric integration of . . -

eq 19. The initially large electrenphonon correlation decreases with V'brat'(_)nal Cohergncg transfer can be Cc_\nve_nlently analy_zed
increasing vibrationally induced dephasing in the electronic subsystem. Using linear combinations of the electron-vibrational correlation
[aSland the vibrational coherenéal] Using completeness in
the electronic subsystem, & |1001| + |1'01'|, the vibrational
coherencealcan be written in the total electron-vibrational

Space as

approximate solutions agree quantitatively for timg&27) <

15 and keep the same qualitative behavior until the time of the
first population collapse. Note that, without inhomogeneous
broadening, the collapse time coincides with the pure dephasing 2
time.”2 In our model the first population collapse occurs 4 times [@l= 10

faster than the population revivalTeon = Tred4, Trev = 27/ = ('] 4 11m))0

w—, such thatwTeo/(27) = 49.87, Teon = 1007, and Trey =

400r. The exact solution shows a noticeable decrease in the combinations of the electronic populati® and the unit &
vibrational amplitude. The decrease is less substantial in thegperator give projections onto the initialM| and final
numeric solution of eq 19 and is even smaller in the perturbative |1'[1'| electronic states. Similarly, combinations of the correla-
SO|uti0n, eq 22. Note that the oscillations of the vibrational tion @SDand vibrational Coherendﬁielzgive the expectation

amplitude are smalk=0.007, relative to its absolute value of 31yes of the vibrational coherences for the init&tLm|Cand
=~7. Although the discrepancy in the oscillations of the mean final [1'm’'|Jelectronic states

amplitudes computed by the three methods in the interaction

representatiofd({t) is noticeable, the observable values of the [&1m (= Bi/2 + aQD (26)
mean amplitudes given in the Scdioger representation display
negligible differences. The vibrational and electronic coherences B1rm 0= @iz - as[]

given in the interaction representation, Figure 3a,b, provide the

envelopes for the rapidly oscillating coherences in the SChro 1,4 giate specific vibrational coherence operators characterize
Q|nger_p|cture (not shown). Th_e co_herence tran_sfer of 'nterEStthe location of the vibrational wavepacket, correlated with a
Is significantly faster tha}n th? wbranongl rela}xatllon seenin th? given electronic state. The real parts of (26) represent the state-
sml?l(ljdecr%azebof thhe vibrational amr|)_:||t3ude| in Figure 3‘3":?”‘1 'S specific coordinates, and the imaginary parts represent the state-
well described by the approximate QHD solutions; see Figures gneific momenta. The values of the state-specific vibrational

4and 5 belovy. S . coordinates determine the magnitude of the probe signal (3).
The dynamics of the vibrational coherence is directly related 3.3. Pathways of the Vibrational CoherenceConsider the

o the electro_nlc cohe_ren_ce shown |n_F|gu_re 3b. According 10 evolution of the expectation values of the state-specific vibra-

eq 14, the time derivative of the vibrational coherence is qna coherences (26) for the system prepared in a direct product

proportional to the current magn.|tud.e of the electronic coher- pure electronic and coherent quasiclassical vibrational states.
ence. The frequences of the oscillations of the two coherences

are determined by the electrophonon couplingg and the o= |aO - |10 (27)
amount of the vibrational energiatal] eqs 9 and 18. The vibrational electronic

envelope of the electronic coherence reaches a maximum each

time the populations of the two states become equal. For timesFigure 5 shows the dynamics of the state-specific vibrational
shorter than the dephasing time, the exact and QHD solutionscoordinates corresponding to this situation. Initid/ll-o =
show negligible differences. A detailed analysis of electronic- —%/2, and the expectation valug|1'm'|LL, specific for the
state dynamics in terms of the state projectiéB§) [§,[] and final state is zero. The initial vibrational amplitu&lm@:o
[%,00on the Bloch sphere is given in ref 57. in the initial state coincides with the total amplitu@elo, which
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coordinate. In the majority of experiments performed using a
constant probe frequency, a mismatch between the optimal and
experimental probe frequencies decreases the signal intensity.
The signal intensity analysis performed with the time-window
Fourier transform technique is able to reveal the vibrational
coherence transfer between the electronic states with different

Re < a|1><1| >
o

& ; : : ' ; b potential energy curvaturé® The recently observéd©.23.61,62
A DWMWVWWMWW effect of vibrational coherence transfer is distinct from the more
o _ typical transfers of electronic energy and population, during
2 B i . . ? which vibrational coherence is usually not maintained.

1] 10 20 30 40 50 &0

time, wt/{ 2n)
Figure 5. Time dependence of the state-specific vibrational coordinates
for (a) the initial and (b) the final electronic state. The exact data (blue  Vibrational coherence transfer is an important and fascinating
solid line) are compared with the approximate results (red dashes) effect observed in a variety of systems, including natural and
generated using egs 18 and 19. The results obtained using the numerigyificial light-harvesting complexes, proteins, and liqu#ig2361.62
SO'“tiob” of ethg are ilnd.iSti”ggiS%b'e .ftr)om. thelresulgs_ obtained “.Si”% Closely related to the energy and electron transfer, the vibra-
erturbation theory solution . The vibrational coordinate associated _; -

\F/)vith the final stateystarts at z(ercz. The vibrational coordinate associatedtlonal therence transfer is a Separate p_h_enomenon that occurs
with the initial state starts equal to the overall vibrational coordinate O the time scale of the electronic transition. To be observed,
and oscillates with the vibrational frequenay The dynamics of the the transfer of vibrational coherence must proceed faster than
state-specific vibrational coordinates are correlated with the electronic dephasing. On the other hand, the energy and electron transfer
population dynamics, Figure 2. can be incoherent and slower than dephasing.

) ) ) ) The vibrational coherence transfer has been described with
oscillates with the frequency corresponding to the electronic the QHD approach at a very simple, but accurate level. Good

state|1[] see Figure 1. . )
The electronic evolution affects the vibrational subsystem. agreement bep;veen the exact quantum S|mulat|or! and QHD
involving the first-order closure (17) is an outstanding result,

As the electronic subsystem approaches the first population flip, emphasizing the value of proper representation of the physical

the vibrational amplitude of the initial state decreases quickly, henomenon. In contrast. the Ehrenfest approach which also
and the amplitude of the final state rises, Figure 5. When the P ; ’ pp '

electonic populato. Tohanges sign and reaché, he [N TE st o sosuitls uaetuin s e
initial-state vibrational coherence vanishes, and the final-state P 9 y 4 )

vibrational coherence grows to the maximal value equal to the The results reported here and in the previous publication

total vibrational amplitude. This transfer of the vibrational |nd|c:f[1te thdat sp_lnttphon]?n mo?et!s are gartu;]ularly usteful ffor
coherence between the electronic states repeats multiple time%gaﬂ;sr.?] ancé'?égn a(t)_onpopu afion and coherence franster,
and is very well described by the QHD approximation. 'llc')h Ing, d X II ’ btained with inimalisti
The fact that the simple QHD approximation involving the N p;:esk(]ante resbu ts are dodtaln_eh with a m|n|ma_|st|c|
first-order closure (17) gives good agreement with the exact afp;pr'oac that can be extende V]‘(”t great computlanona
result is remarkable and emphasizes the flexibility of the QHD efficiency to systems comprised of many vibrational and
approach. If the operator representation is chosen appropriately,eleCtro.nIC d_egrees of freedom. The current level (.)f the QHD
higher order QHDs are not needed. The lowest-order mean_approxmaﬂon extends only one step beyond classical mechan-

field-type approximation becomes sufficient and can be easily g:s. r-lc;;]i?n gﬁganEa?;;hi;Zf;t?ggﬁ r ﬁgﬁztg?:m'ngiﬁ:\éiiig;‘;nf
used in practice for large systems. pp q y Y y

In the wavefunction representation, the vibrational coherence N, and so does the computational effort. In comparison, an exact

transfer involves motion of the vibrational wavepacket between \év::iiflj/g%ttlgrns rcv?ttrr;\(/)l dvreecag:;es s:oé):grztéogf"}r?: dzfnadg:ﬂ a
the electronic potential energy surfaces; see eq 2 and Figure 1. P 9 ’

. ) - N
In some cases, the transfer of the electronic population and thedens'ty matrllx description scaless". The presented approgch
vibrational coherence show distinct stéps!-28.88n the present can be appl_|ed to systems that are ne_arly the same In Size as
case the transfer is continuous, because the initial vibrational those described with classical mechanics, allowing for a great

amplitude is much larger than the displacement between theIevel of detail in the modeling of the experimental data.
potential energy minima in the two electronic states. First, the
larger portion of the wavepacket remains in the initial potential,
and the expectation value of the vibrational coordinate oscillates
around the equilibrium position of the initial surface. Gradually,
the wavepacket shifts to the final state, and its mean coordinate
oscillates around the equilibrium position associated with the
final state. If the curvatures of the initial and final electronic
energy surfaces are different, the frequency of the oscillation
of the vibrational coordinate changes during the transfer.
Experimentally, emission from the excited statdsand|1'(]

4. Concluding Remarks
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